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In [1] Tsyrlin investigated Poisson's equation in
order to establish the conditions of conservation of
electrostatic field geometry in the presence of a space
charge p. It is worthwhile considering the complete
system of beam equations and drawing certain con-
clusions about the coordinate systems in which the
equipotential surfaces are given by equations x! =
= const at p = 0.

In the stationary case in the absence of an external
magnetic field a monoenergetic regular [2] nonrela-
tivisitic beam of charged particles with a specific
charge 1 of the same sign and value is described by
a system of equations which in the arbitrary curvi-
linear coordinate system x' (i = 1, 2, 3) has the form
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Here vj are the covariant velocity components, ¢
is the scalar potential, and p the space charge density.
Equations (1) have been written in the dimensionless
variables r°, V°, ¢° p° (r, V are the absolute values
of the radius vector and the velocity vector)
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r=ar®, V=UV°,
with the dimensionless quantity symbol omitted; a, U
are constants with the dimensions of length and vel-
ocity, respectively.

The potentiality of the velocity vector makes it
possible to reduce system (1) to a single fourth-order

nonlinear differential equation in the action W [3, 4]:
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We now pose the problem of finding in Euclidean
space (see [5])

szrst =0 ‘ (3)

the coordinate systems x1 i=1,2,3)in which ¢ = (p(xl).

We shall restrict the discussion to two~dimensional
orthogonal systems given by the equations

= Ref(z), 2*=Im f(2) (2= 2- iy).
In this case

gn=gn="Vg.

The most general form of the physical velocity

components v (i =1, 2) satisfying the energy integral
at ¢ = @(x Y 1s given by the expressions

V= Vgﬁvlz Vﬁ sin 9, Vyr = Vém"&: V%‘ cos ¥,

=73 (@, 2?).

Equation (2) and the potential flow condition are
written as follows:
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In (4), (5) a prime denotes differentiation, while
the subscript denotes the coordinate with respect to
which differentiation is performed.

In the case considered the conditions that must be
satisfied if space (3) is to be Euclidean reduce to the
single equation
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We shall assume that ¢ = ¢ (x'), i.e., that the v§,
like ¢, depend only on x!. Then Egs. (4), (5) are first-
order linear partial differential equations in In g:
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whose general solutions are given by the equations

Ing=4F + 4In sin & + G (§), E==2>—lnsin® (9)

Ing= —2f—4n cos & + Q (), {="2*— In cos 9 (10)

Requiring that expressions (9), (10) be identical,
we obtain

G = B,

f = const .

Q= Bgi
Thus, for Ing we have
(11)

Ing =0 (") + pa2.
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It is clear that (6) is satisfied if &x!) is a linear
function. Consequently,

g = yexp (az® + fz7) .

With different values of the constants o, 8, v
Eq. (11) gives Cartesian x, y, polar R, ¥, and spiral
g1, gy coordinates [5].

We shall show that when ¢ = $(x? a joint solution of
Egs. (4), (5) does not exist. .

In the three-dimensional case v;( satisfy the energy
integral at ¢ = @ (x;), if

V= Vi‘;ﬁcos‘l’sin 2, ?0= V29 cos ¥ cos &,
Vya == V% sin ¥
Y= ¥ (2, ?, o3), 4 =B (21, 22, 2%).

Assuming that ¥ = ¥(x!), ¢ = ¢ (x') and requiring
that Egs. (1) transform into ordinary differential
equations, we arrive at three cylindrical coordinate
systems corresponding to the above-mentioned two-
dimensional systems, and at the spherical coordinates,
r, 6,y. Thus, at p = 0 the field geometry is preserved
between parallel planes x = const, coaxial cylinders
R = const, concentric spheres r = const, as well as
between inclined planes y = const, spiral cylinders
q; = const, g, = const, and cones 6 = const. The first
three cases, corresponding to the classical Child-
Langmuir-Blodgett solutions, are well known. For
these geometries one-dimensional (single-component
vy = dS/dx!, v, = v3 = 0) flows are realized. None of
the other flows enumerated have this property.

Since the solution of the beamn equations is not
known in advance, it evidently only makes sense to

pose the problem of the conservation of field geometry
when a study of this problem facilitates the finding

of such a solution. If is to be expected that this will
be the case only for the four coordinate systems men-
tioned above [6, 7], although in the present formulation
it was found possible to prove weaker assertions,
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